
Graph Neural Network vs. Large Language Model: A Comparative
Analysis for Bug Report Priority and Severity Prediction

Jagrit Acharya
University of Calgary

Calgary, Canada
jagrit.acharya1@ucalgary.ca

Gouri Ginde
University of Calgary

Calgary, Canada
gouri.deshpande@ucalgary.ca

ABSTRACT
A vast number of incoming bug reports demand effective methods
to identify priority and severity for bug triaging. With increased
technological advancement, machine learning and deep learning
have been extensively examined to address this problem. Although
Large Language Models (LLMs) such as Fine-tuned BERT (early
generation LLM) have proven to capture context in the underlying
textual data, severity and priority prediction demand additional
features for understanding the relationships with other bug reports.
This work utilizes the graph-based approach to model the bug re-
ports and their other attributes, such as component, product and
bug type information. It utilizes the relational intelligence of Graph
Neural Network (GNN) to address the prioritization and severity as-
sessment of bug reports in the Bugzilla bug tracking system. Initial
tests on the Mozilla project dataset indicate that a project-wise pre-
dictive approach using GNNs yields higher accuracy in determining
the priority and severity of bug reports compared to LLMs across
multiple Mozilla projects, contributing to a notable advancement
in the automation of bug severity and priority prediction tasks.
Specifically, GNNs demonstrated a remarkable improvement over
LLMs, increasing the priority prediction accuracy by 37% & 30%
and severity prediction accuracy by 43% & 30% for Core and Firefox
projects, respectively. Overall, GNN outperformed the Fine-tuned
BERT (LLM) in predicting priority and severity for all the Mozilla
projects.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; Software verification and validation; Empirical software
validation;

KEYWORDS
Requirement Engineering, Large Language Model, BERT, Graph
Neural Networks, Natural Language Processing
ACM Reference Format:
Jagrit Acharya and Gouri Ginde. 2024. Graph Neural Network vs. Large
Language Model: A Comparative Analysis for Bug Report Priority and
Severity Prediction. In Proceedings of the 20th International Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0675-2/24/07
https://doi.org/10.1145/3663533.3664042

Predictive Models and Data Analytics in Software Engineering (PROMISE ’24),
July 16, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3663533.3664042

1 INTRODUCTION
Bug priority prediction helps software developers focus their efforts
on the most critical bugs affecting the software’s core functional-
ity. Bug prioritization is essential for effective resource allocation
and planning for fixing activities and additional testing [25]. Open
source bug tracking tools such as Bugzilla [4] facilitate such plat-
forms to manage the bug reports effectively. However, due to a vast
number of incoming bug reports, engineering managers and ana-
lysts responsible for bug triaging [8] grapple with effective methods
to identify the priority and severity of these issue reports at the
project level. Automated priority and severity prediction has been
explored in the past [25] [26] [35].

Chen et al. [7] uses deep learning to automate parts of incident
management by prioritizing alerts based on historical data empir-
ically. This method focuses on the most crucial alerts and helps
manage the high volume of bug reports thereby improving bug
triaging processes. However, identifying the effective method at a
fine granular level remains an open question. We explore how bug
reports can be represented holistically utilizing other aspects and
attributes such as product type, component and bug type, which can
capture important and useful information for further automation
using prediction models.

Need for graph-based analysis: In Bugzilla, bug reports’ sever-
ity value describes the impact of a bug report. This field is utilized
by the programmers/engineers/release managers/managers to de-
termine the severity and used as input for the priority of the bug
report. It is recommended that it should not be set by people filing
bugs. The severity value determines how developers working on
the bug reports can effectively organize their work and further
prioritize (set and reset new priority value) their issues. Thus, deter-
mining the severity of bug reports is the first step of issue triaging
and has a wider impact on release planning and resource utilization.
The severity value for the Defect bug report cannot be null, unlike
Enhancement and Task bug reports [42]. Thus, other properties of
the bug report, such as bug report type in addition to component,
product and summary, are crucial to determine the severity and
priority values of the bug reports.

Graph convolutional networks (GCNs) are a subset of graph
neural networks (GNNs) that have demonstrated strong perfor-
mance classification tasks. Researchers have begun extending these
methods to heterogeneous graphs, with Yao et al. [44] develop-
ing a notable GCN-based classification approach. Graph Neural

2

https://orcid.org/0009-0008-0302-6130
https://orcid.org/0000-0001-7519-3503
https://doi.org/10.1145/3663533.3664042
https://doi.org/10.1145/3663533.3664042


PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jagrit Acharya and Gouri Ginde

Networks (GNNs) have emerged as a powerful tool in software en-
gineering, especially in the context of bug report analysis. Zhou et
al. [45] highlight the unique capability of GNNs to capture complex
relationships and structural information within data, a feature that
is particularly beneficial for assessing the severity and priority of
bug reports in software projects. In contrast, while Large Language
Models (LLMs) such as fine-tuned BERT have shown proficiency
in textual content analysis, they may not fully exploit the intricate
web of relationships characterizing bug reports. These relationships
include connections among various bugs and their attributes like
type, component, and product. These are crucial for a nuanced
understanding of each bug’s implications within the software’s
ecosystem.

In this study, we use attributes such as summary, product, com-
ponent, and bug report type to capture a holistic view of the bug
report and generate a graph-based representation of the data. Such
modelled data is further processed using Graph Neural Network
(GNN) algorithms. Its results are comparedwith the Large Language
Model, specifically a fine-tuned Bidirectional Encoder Representa-
tions from the Transformers (BERT) model, which serves as our
baseline. Thus, we explore two research questions (RQs) as follows.

RQ1 How do Language Models (LLM) and Graph Neural Net-
works (GNNs) compare in terms of accuracy in predicting
the severity of issues within the Mozilla family of projects?

RQ2 How do Language Models (LLMs) and Graph Neural Net-
works (GNNs) compare in terms of accuracy in predicting
the priority of issues within the Mozilla family of projects?

Our contributions are as follows:

• We propose a novel graph-based dataset representation to
capture holistic bug report information. This representation
will leverage GraphSAGE and Graph Attention Networks
(GAT) to effectively model the complex relationships within
the data. To establish meaningful connections among graph
nodes, we’ll employ cosine similarity to determine their re-
lationship. This approach aims to consolidate information
and enhance the modelling of bug report data.

• We explore the utility of this graph-based representation for
bug report severity and priority prediction at a project level
(fine-granular level) for the projects: Core, Firefox, DevTools
and Testing from the Mozilla family of projects using GNN.

• We compare our method with the LLM (fine-tuned BERT)
model and provide evidence for effective representation of
information and knowledge using undersampling and over-
sampling () data balancing techniques.

• Our fine granular analysis of the project-level information for
theMozilla family of products relies on the approximately 0.5
million bug reports spanning from 2015 to 2023 we gathered
from the online Bugzilla repository.

The structure of the rest of the paper is as follows. Section 2
details existing literature, and Section 3 provides information about
the data collection and pre-processing. In Section 4 we elaborate on
the methodology and study design followed by results in Section 5.
Section 6 lists various limitations and Section 7 explains conclusion
and future work.

2 RELATEDWORK
Bug report priority and severity have been extensively analyzed
and explored in the Software Engineering research community.
This section discusses and elaborates on existing techniques and
methods utilized in the literature to predict software bug severity
and priority.

2.1 Conventional Machine Learning-Based
Approaches

Cubranic and Murphy et al. [26] addressed the challenge of task
prioritization through the lens of Machine Learning (ML), fram-
ing it as a classification problem in their research. Various other
researchers have recently analyzed alternative methodologies and
strategies to enhance the efficiency of bug-fix prioritization and
assignment processes.

Menzies and Marcus [25] pioneered a distinct conceptual frame-
work to automate the severity prediction of bug reports. They pro-
posed the SEVERity Issue Assessment (SEVERIS) method, which
leverages a machine learning classifier to predict the severity of
bug reports by examining feature vectors built from the top k fea-
ture words. This contribution significantly enriched subsequent
research in bug priority prediction, including studies by [31], [34].
Following up on this work, [17] [22] extended its application to
the domain of open-source software bug repositories. Tan et al.[33]
introduced an innovative approach for assessing the severity of
bug reports by associating them with corresponding entries in the
Stack Overflow bug repository. They employed three distinct clas-
sification algorithms for their study: K-nearest neighbours (KNN),
Naive Bayes, and Long Short-Term Memory (LSTM) networks and
significantly enhanced the mean F1-score.

2.2 Deep Learning-Based Approaches
The field of artificial intelligence has witnessed a significant evolu-
tion with the advent of Large Language Models (LLMs) like Trans-
formers, BERT, and GPT [38][18]. Renowned for their versatility,
these models have set new benchmarks across various Natural Lan-
guage Processing (NLP) task applications. These models have been
predominantly successful in capturing and interpreting contextual
information from textual data [2][9].

A recent study by Ali et al. [1] introduced an approach where a
fine-tuned BERT model was applied to mobile application reviews
to predict severity classes. The dataset employed in their study
was composed exclusively of app reviews alongside associated
dates and severity ratings, resulting in a predominantly text-based
dataset. Their methodology demonstrated superior performance
over several deep learning models, showcasing the efficacy of fine-
tuned BERT models in extracting meaningful insights from text-
heavy data for severity prediction tasks.

Graph Neural Networks (GNN) have been extensively studied in
understanding and interpreting graph-structured data. Their capa-
bility to process and analyze graph data through recursive message
passing and aggregation mechanisms has been fundamental in var-
ious applications, including software project management [21, 44].
Recent work by Dong et al. [10] applied a GNN framework to de-
termine which developer should fix a bug, enhancing prediction
accuracy by 15% for specific projects as compared to previous work.

3



Graph Neural Network vs. Large Language Model: A Comparative Analysis for Bug Report Priority and Severity PredictionPROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

This improvement highlights GNN’s effectiveness in bug-related
prediction tasks. Panda et al. [28] used fuzzy similarity to propose
bug priority and achieved promising results.

2.3 Applications of GNN
GNNs have demonstrated significant success in multiple areas,
including NLP tasks [43], especially in recommender systems [13],
in healthcare analytics [29], and other diverse applications [20].
Taking inspiration from this scholarly work, in this research, we
propose to interpret the bug report and its attributes in a graph-
based structure to further utilize GNN for priority and severity
prediction.

3 DATA COLLECTION
In this study, we developed a Python script to systematically collect
and refine data from the Bugzilla bug tracking platform [4]. We
gathered 452,257 bug reports from June 2015 through December
2023 using Bugzilla’s API library calls [3] iterating through bug
IDs.

Bug reports in Bugzilla can be one of the three types: Enhance-
ments, Defects and Tasks. Each bug report returned by the API had
several attributes, and we identified 11 useful ones for our study.
More details about the selected attributes (a.k.a properties) are in
Table 1. Attribute, ID, serves as a unique identifier for each bug
report and is used to uniquely identify every node in our graph rep-
resentation Figure 4. Summary provides a brief description of the
bug report in a string format, allowing for a quick overview of the
problem at hand; it is used to draw edges between the nodes for the
graph. The Product attribute indicates the product or project with
which the issue is associated, with the dataset covering four Mozilla
products: Core, Firefox, DevTools, and Testing. The Component at-
tribute refers to the specific part of the product that is affected by
the issue which is used a the node feature of the graph’s node. The
Blocks attribute indicates other issues that are blocked by this cur-
rent bug. In contrast, the Depend_on attribute identifies other bugs
that the current bug relies on or is dependent upon. Additionally,
the Status attribute provides information about the current state of
the bug report, such as whether it is assigned, unassigned, resolved,
new, etc.

The Priority denotes the importance or urgency of addressing
the bug, classified into five categories from P1 to P5, indicating the
sequence in which issues should be tackled here: P1 is the highest
Priority, and P5 is the lowest. Lastly, for Severity, set by the per-
son raising the bug report, it helps programmers/engineers/release
managers prioritize the bug report further. The dataset was con-
solidated into four principal classes: Normal, S3, S4, and Critical.
This consolidation was due to the relatively low incidence of issues
in the Major, S2, Minor, Trivial, Blocker, Enhancement, and S1 cat-
egories, which rendered them less impactful for the ML training
process.

Figure 1 shows the data distribution for the four projects based on
various Severity categories. The Core and Firefox project have large
number of samples from each severity type. Hence, only normal,
S3, S4 and critical classes are selected as they have relatively larger
samples for each of the four projects (Core, Devtools, Firefox and
Testing).

Figure 2 shows the data distribution for the four projects based
on various Priority categories. All five priority classes have a large
number of samples for Core and Firefox projects compared to Test-
ing and DevTools. For the DevTools project, Class P4 samples are
fever in number. We have made the complete dataset and source
code open source1

4 METHODOLOGY AND ARCHITECTURE
Figure 3 shows the high level architecture of our study. The dataset
is mined using Buzilla API. Other steps of the study design are
explained as follows.

4.1 Data Pre-processing
For our study, after several experiments and feature importance
tests, we determined that the attributes Blocks, Depends_on, and
Status did not yield and negatively impacted the predictive results.
We utilized a systematic evaluation employing several statistical
tests and analytical techniques, including Random Forest Feature
Importance, Pearson Correlation Coefficients, and Multicollinearity
Assessment via Variance Inflation Factor (VIF) analysis to determine
their exclusion as implemented by researchers [23, 24, 30].

Further, this raw dataset was passed through several stages of
the preprocessing pipeline. We chose the top 4 projects out of the
150 projects in our dataset since these top projects contributed to
over 50% of the total data points as shown in distribution charts in
Figure 2 and Figure 1 for priority and severity types respectively.
Various preprocessing steps carried out are as follows:
Text normalization: All Summary text data was converted to
lowercase to maintain uniformity and facilitate easier analysis.
Punctuation and stopword removal:We eliminated punctuation
marks, special characters, and common English stopwords from the
text. This step was aimed at emphasizing the meaningful content
within the dataset.
Null value elimination: We removed all entries with null or
missing values in the priority and severity attributes to ensure data
integrity. This removed 105,515 data points with one or more empty
values for the data sample set focusing on the priority dataset and
25,968 rows from the severity-focusing dataset.
Categorical to numerical conversion: We converted categorical
data present in the priority and severity attributes into a numerical
format using label encoding. This transformation facilitates apply-
ing various data analysis and ML algorithms that require numerical
input.
Filtering: Data points featuring Summary attribute with fewer
than five words were excluded from the dataset, totalling 48,284
instances.

4.2 Graph Structure
For our proposed approach of modelling the dataset using a graph
network, it has nodes, edges, node properties and edge properties
as shown in Figure 4. We convert summary attribute content into
Term Frequency-Inverse Document Frequency (TF-IDF) vectors,
adopting a technique previously utilized for severity and prior-
ity prediction [28, 32]. These vectors, together with ID, one-hot
encoded representations of component and bug report type, and
1https://doi.org/10.5281/zenodo.10892319

4

https://doi.org/10.5281/zenodo.10892319


PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jagrit Acharya and Gouri Ginde

Table 1: Content and structural information about the dataset

Property Description Value

ID Unique identifier Number

Summary A brief description of
the bug report

String

Product The product or project
the issue is associated
with

Four products [41]: Core - For bugs in the shared components used by Firefox and
other Mozilla software, including handling of Web content, Firefox - An open-source
web browser, DevTools - A set of web developer tools built into Firefox, Testing - For
bug reports related to automated testing of Mozilla client code (Firefox, Thunderbird,
Fennec, Gecko, etc.)

Component A specific part of the
product affected by the
issue

Framework, Debugger, Console, General

Bug types/ Issue
type

The nature or category
of the reported bug

Three types: Task (refactoring, removal, replacement, enabling or disabling of func-
tionality and any other engineering task), Defect (regression, crash, hang, security
vulnerability and any other general issue), Enhancement (new feature, improvement in
UI etc.)

Priority The importance or ur-
gency of fixing the issue

Five Priority categories: P1 (Fix in the current release cycle), P2 (Fix in the next release
cycle or the following (nightly + 1 or nightly + 2), P3 (Backlog), P4 (Do not use, this
priority is for web platform test bots), P5 (Will not fix) and – (No decision) [12]

Severity The impact level of the
issue on the product

Four Severity categories: Normal, S3 (Blocks non-critical functionality), S4 (low or no
impact to users), Critical (Blocks development/testing) [42]

Figure 1: Data distribution based on various severity types:
Core and Firefox projects have a large number of samples
from each severity type. Only normal, S3, S4 and critical
classes are selected as they have relatively larger samples
for each one of the projects (Core, Devtools, Firefox and
Testing).

Figure 2: Data distribution based on various priority types:
All five priority classes have a large number of samples
for Core and Firefox projects compared to Testing and
DevTools. In general, the class imbalance is evident in
this data distribution chart

severity (when predicting priority) or priority (when predicting
severity), are incorporated as node features. The edges within the
graph are established by calculating the cosine similarity between
the TF-IDF vectors of the summaries. We determined 0.95 as the
cosine similarity threshold for creating the edge between any two
vector representations based on various experiments with varying
threshold values. Experiments showed that lower threshold values
significantly increased the degree of the nodes by doubling or even

tripling it, and this resulted in a substantially denser graph and
lowered the evaluation scores, a finding that aligns closely with
those reported in [40].

4.3 Graph Neural Network
In our study of graph neural networks, we tested various archi-
tectures, including Graph Convolutional Network (GCN), Graph
Attention Network (GAT), and GraphSAGE. We evaluated these

5



Graph Neural Network vs. Large Language Model: A Comparative Analysis for Bug Report Priority and Severity PredictionPROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

Figure 3: Overall research design

Figure 4: Graph network design depicting various nodes,
properties, and edges for the bug reports dataset. In this
model, if priority is the data label, severity is used in the
feature vector, and if severity is the data label, priority is
used.

models based on their capacity to learn graph-structured data with
node features and graph topology. Our finding shows that GNN
model with GraphSAGE layers, followed by GAT layers delivered
superior performance for multi-class classification.

Our graph 𝐺 = (𝑉 , 𝐸), where 𝑉 represents the set of nodes
(issues) and 𝐸 represents the set of edges (relationships between
issues based on similarity of their descriptions). Each node 𝑣 ∈ 𝑉 is
associated with a feature vector x𝑣 derived from a combination of
TF-IDF and one-hot encoded categorical attributes.

The GNN model architecture is initiated with two main param-
eters: the number of node features, which represents the number
of features each node has, and the number of classes, which de-
notes the number of possible output classes for the classification

task. Within the model, two types of convolutional layers are em-
ployed: GraphSAGE [15] and GAT [39], both of which are critical
components of the graph neural network (GNN) approach.

The GraphSAGE (Graph Sample and Aggregation) layer updates
node features by aggregating features of its immediate neighbours
followed by a transformation via a weight matrix and a non-linear
activation and the formula defined by Fey et al. [11]:

h(𝑘 )𝑣 = 𝜎

(
W(𝑘 ) ·MEAN

(
h(𝑘−1)𝑣 ,

{
h(𝑘−1)𝑢 : 𝑢 ∈ N (𝑣)

}))
where:
• h(𝑘 )𝑣 denotes the feature vector of node 𝑣 at the 𝑘-th layer.
• W(𝑘 ) is the layer-specific trainable weight matrix.
• 𝜎 is a non-linear activation function, in our case ReLU.
• N (𝑣) denotes the set of neighbors of 𝑣 in the graph 𝐺 .
• MEAN represents the mean pooling aggregation function,
computing the average of the central node’s features and its
neighbours’ features at the previous layer.

The Graph Attention Network (GAT) introduces an attention
mechanism that assigns different weights to different nodes in a
neighborhood, allowing for more nuanced feature aggregation: The
input to our GAT layer is a set of node features, h = {®ℎ1, ®ℎ2, . . . , ®ℎ𝑁 },
where ®ℎ𝑖 ∈ R𝐹 , and 𝑁 is the number of nodes, and 𝐹 is the number
of features in each node.

According to Fey et. al [11] we use the following equation to get
attention scores

𝛼𝑖 𝑗 =
exp(LeakyReLU(𝑎𝑇 [Wh𝑖 ∥Wh𝑗 ]))∑

𝑘∈N(𝑖 ) exp(LeakyReLU(𝑎𝑇 [Wh𝑖 ∥Wh𝑘 ]))

h′𝑖 = 𝜎
©«

∑︁
𝑗∈N(𝑖 )

𝛼𝑖 𝑗Wh𝑗
ª®¬

where:
• 𝛼𝑖 𝑗 is the attention coefficient computed between node 𝑖 and
node 𝑗 , indicating the importance of node 𝑗 ’s features to
node 𝑖 .

• 𝑎 andW are learnable parameters of the model, with 𝑎 being
a vector that projects the concatenated features into a scalar
andW being the shared linear transformation applied to the
features before attention coefficients are computed.

• ∥ denotes concatenation of feature vectors.
• The function LeakyReLU is used to introduce non-linearity
in the computation of attention coefficients.

• 𝜎 is a non-linear activation function, and h′
𝑖
represents the

updated feature vector of node 𝑖 .
Themodel’s output is subjected to a log softmax operation, which

is suitable for multi-class classification tasks because it is a variant
of the softmax function that converts the raw output scores from the
network and normalizes these values. The softmax output indicates
the probability of each class for a given bug. The class with the high-
est probability is chosen as the final classification. This structure
enables the model to effectively learn from the graph-structured
data, leveraging the node features and the graph topology. The
model, alongside an optimizer and a loss function, is also initialized
to facilitate the training process. This comprehensive setup forms

6



PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jagrit Acharya and Gouri Ginde

the basis for training the GNN model to accurately predict issue
priority and severity further.

4.4 Fine-Tuned BERT (LLM)
LLM model such as Bidirectional Encoder Representations from
Transformers (BERT) is a pre-trained transformer model known for
its effectiveness in various natural language processing (NLP) tasks
and text classification. Also, it is widely used in Software Engineer-
ing tasks such as bug report priority and severity prediction. In
this study, we utilize fine-tuned BERT [9] as our baseline to predict
the priority and severity of bug reports. Thus, we fine-tuned the
bert-base-uncased variant of the BERT model for the classification
task, integrating it with additional categorical data derived from our
dataset. This dataset was preprocessed, generating BERT embed-
ding of text summaries and one-hot encoding of categorical features
for compatibility with our model architecture, which incorporates
a custom BertClassifier. This classifier extends the original BERT
structure with a dropout (ratio = 0.1) and a linear classification
layer, processing textual and categorical inputs. The model was
optimized over three epochs using the Adam optimizer with a 2e-5
learning rate and a batch size 16.

Table 2: Train, test, and validation sample size for Priority
prediction model training

Project Train set Test set Validation set #Classes
Core 27,000 9,000 9,000 5

Firefox 11,117 3,706 3,706 5
Devtools 5,277 1,759 1,759 5
Testing 2,305 768 768 5

4.5 Managing Skewed Dataset
Figure 1 shows that the dataset exhibits a prevalence of entries
with the Normal severity label over other categories, while entries
tagged with the Enhancement severity label are considerably the
least. Similarly, within the spectrum of priority labels, Figure 2
shows that the P3 type outnumbered its other priority types for
almost all the Mozilla products examined.

To effectively balance the dataset, we used two techniques, i.e.
undersampling and the Synthetic Minority Over-sampling Tech-
nique (SMOTE) techniques in order to create two different datasets
to test the models. Initially, undersampling was applied to reduce
the size of the majority class, bringing its quantity closer to that of
the minority class. Following this, we created a new dataset using
SMOTE to further augment the minority class by synthesizing new
examples, thereby ensuring an equal number of observations for
each class in both datasets used for training and comparing our
models. we test our proposed method (GNN) and the baseline (LLM)
using two sampling techniques:

- Undersampling: This technique reduces the size of the ma-
jority class to match the minority class, thereby balancing
the dataset.

- Oversampling: The Synthetic Minority Over-sampling Tech-
nique (SMOTE) [6] is a method widely used for its ability

Table 3: Train and test and validation set size information
for Severity prediction model training

Project Train Test Validation #Classes
Core 27,000 9,000 9,000 4

Firefox 6,739 2,246 2,246 4
Devtools∗ 1,752 584 584 3
Testing 2,009 670 670 4

∗ Due to lack of enough train set for Critical class, we exclude it for Severity analysis

to generate synthetic instances based on feature space simi-
larities within the minority class, rather than merely repli-
cating existing data. This approach has effectively demon-
strated mitigating the issues associated with traditional over-
sampling and under-sampling methods, thereby ensuring a
more equitable distribution of data across classes [14][16]

.

4.6 Model Training
To train the ML models, we split the dataset into distinct subsets
for training, validation, and testing in the ratio of 60%, 20%, and
20%, respectively. The validation test was specifically used for hy-
perparameter tuning. This partitioning approach helps in tuning
the initial parameters of the model effectively. Additionally, we
incorporate a 10-fold cross-validation method to ensure a thorough
evaluation and generalizability of our model across accuracy, preci-
sion, recall, and F1-score, enhancing its reliability and effectiveness
in handling varied data distributions. Table 3 and 2 show statistical
details about the Train, test, and validation set sizes used for this
study.

4.7 Computational Resources
Our models, including the GNN architecture and the fine-tuned
BERT, were trained on NVIDIA Tesla A100 GPUs with 50 GB of
RAM and a 30-core CPU setup. These GPUs provided the necessary
computational power to rapidly train and handle our extensive
datasets and complex model architectures. The efficiency and scal-
ability of our experiments were significantly enhanced by these
resources, ensuring the reproducibility of our study in comparable
high-performance computing environments.

4.8 Model Evaluation
Four keymeasures are pivotal in evaluating the proposedmodels for
priority and severity classification tasks: accuracy, recall, precision,
and the F1 score, as consistently highlighted in the priority and
severity prediction research [37]. We evaluated LLM and GNN
models in terms of these four measures for category (i) as below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) = 𝑇𝑃 (𝑖)
𝑇𝑃 (𝑖) + 𝐹𝑃 (𝑖) (1)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖) = 𝑇𝑃 (𝑖)
𝑇𝑃 (𝑖) + 𝐹𝑁 (𝑖) (2)

𝐹1(𝑖) = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) + 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖) (3)

7



Graph Neural Network vs. Large Language Model: A Comparative Analysis for Bug Report Priority and Severity PredictionPROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑖) = 𝑇𝑃 (𝑖) +𝑇𝑁 (𝑖)
𝑇𝑃 (𝑖) +𝑇𝑁 (𝑖) + 𝐹𝑃 (𝑖) + 𝐹𝑁 (𝑖) (4)

𝑇𝑃 (𝑖 ) : Bug report truly classified as category 𝑖
𝐹𝑃 (𝑖 ) : Bug report falsely classified as category 𝑖
𝐹𝑁 (𝑖 ) : Bug report falsely classified as not being category 𝑖
𝑇𝑁 (𝑖 ) : Bug report truly classified as not being category 𝑖

5 RESULTS
The research questions are evaluated using two methods, LLM and GNN,
and two sampling techniques, Undersampling and Oversampling (using
SMOTE). This section presents the results of these experiments.

5.1 Answering RQ1: Bug Report Severity
Prediction

For severity prediction, we used to oversample data samples across all sever-
ity labels of Mozilla Projects, setting a balanced stage for GNN’s application.
The effects of applying GNN and LLM to different projects are illustrated in
Figure 6. At the same time, the outcomes with undersampling are depicted
in Figure 5.

5.1.1 Undersampling: Figure 5 shows the undersampling results through
the GNN and LLM performance metrics.

• GNN achieved a 0.96 across accuracy, precision, recall, and F1 score
for the Mozilla Core project. In contrast, LLM scored significantly
lower scores of accuracy = 0.67 and 0.55 for precision and recall. For
the Mozilla Core project, the GNN model consistently achieved a
score of 0.96 in accuracy, precision, recall, and F1 score. In contrast,
the BERT model demonstrated significantly lower performance,
with an accuracy of 0.67 and a precision and recall score of 0.55.
Thus, increasing the overall priority prediction by 43%.

• Within the Core Project, GNN’s uniform dominance over LLM with
a decent margin because of the sufficient size of training data for
all the classes and effectively capture relationships and structures,
which can also be evident in Table 4 where GNN was particularly
effective across all classes in the Core Project, showing consistently
good performance.

• In contrast, the LLM showed uneven performance; for instance, it
did better in the Normal class than in others. The Firefox project
shows GNNmaintaining decent performance at 0.78 in all categories,
outperforming BERT’s 0.60-0.62 range.

• In the Testing project, GNN recorded a 0.82 in accuracy and recall,
with LLM lagging at 0.80 for accuracy and lower in other measures.
We attribute this to skewed class distribution compared to other
three projects.

• The DevTools project further confirmed GNN’s efficacy, with scores
of 0.69 in accuracy and recall, overshadowing LLM’s 0.6 in accuracy
and around 0.55 in other metrics.

GNN consistently surpasses the performance of LLM across all projects,
especially for projects with imbalanced datasets. Utilizing GNN, the over-
all measure scores increased by 10-20% (comparing Figure 5 and Figure
6). For the Core project, the measure scores remain constant due to a
relatively balanced dataset for all the classes, while the projects with an
imbalance dataset have an increase of up to 20%

5.1.2 Oversampling: Figure 6 shows the severity prediction with SMOTE.
The comparative analysis of the model performances across various projects
(after balancing the data, Core and Firefox already have a balanced set of data,
hence, no improvement was shown there) showed improved performance
for the Testing and DevTools dataset. Contrary to the Core and Firefox
datasets, these projects had a significant imbalanced data. Thus, utilizing

SMOTE demonstrated relatively good improvement across all the classes
and evaluation measures.

• GNN consistently demonstrated superior predictive capabilities over
the BERT, as evident in their accuracy, precision, recall, and F1
score metrics. Specifically, within the Core Project, GNN showed
uniform scores of 0.96, significantly ahead of LLM’s consistent 0.67
across all metrics, highlighting GNN’s robustness in complex data
environments.

• The Firefox project showed a narrower performance gap, with GNN
at 0.76 and LLM at 0.61, indicating a competitive edge for GNN.

• Interestingly, the Testing project revealed a scenario where LLM
slightly edged out GNN in accuracy (0.82 vs. 0.81) and showcased
close matches in other metrics, suggesting LLM’s nuanced effective-
ness in certain conditions.

• For DevTools, both models performed commendably, with GNN
maintaining a high consistency at 0.81 across metrics, compared to
LLM’s substantial improvement to 0.70, underscoring GNN’s overall
superiority while acknowledging LLM’s adaptability and potential
under specific scenarios.

For Severity prediction, using the oversampling technique, both GNN
and LLM showed comparable performance, with GNN leading in over-
all measures. However, LLM demonstrates notable strengths in a few
scenarios.

5.2 Answering RQ2: Bug Report Priority
Prediction

Similar to RQ1, we utilize two methods and two sampling techniques to
predict the priority of bug reports and compare the outcome based on vari-
ous measures. Figure 8 shows the comparative results using oversampling,
while the outcomes with undersampling are shown in Figure 7

For Priority prediction, the GNN consistently surpasses the performance
of LLM across all projects. Notably, for projects with imbalanced datasets,
GNN outperforms by 8-10% in all evaluation metrics. However there are
no significant changes in scores for Core and Firefox projects, as the mined
dataset was already relatively balanced (Figure 2).

The Core Project had a relatively large and balanced dataset, which
reflected well in performance measures where accuracy, F1 score, recall,
and precision reached 0.92. This also emphasizes that GNN performs well
with large and balanced datasets.

5.2.1 Undersampling: In our comparative analysis of GNN and LLM for
predicting priority undersampling as shown in Figure 7.

• Across different projects, GNNs generally outperformed BERT (an
early generation LLM) in the Core project across all the classes,
which can be seen in Table 5, with significantly higher accuracy,
precision, recall, and F1 scores (all metrics at 0.92 for GNN vs. 0.67
for LLM). Thus achieving an overall improvement of 37%.

• In the context of the Firefox and Testing projects, GNNs demon-
strated their superiority over LLMs in most measures. However,
the margin was narrow for the DevTools project, suggesting that
more data can enhance the learning capabilities of both models. This
nuanced performance highlights the unique strengths of GNNs and
LLMs, with GNNs showing a better fit for tasks involving relational
data.

• In contrast, LLMs cannot capture the relational dependencies. Still,
they could offer competitive advantages in scenarios requiring ad-
vanced natural language understanding.

8



PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jagrit Acharya and Gouri Ginde

Figure 5: Bug severity prediction metrics: Accuracy, preci-
sion, recall and F1-score for 10-cross fold validation using
undersampling for GNN and fine-tuned BERT without
SMOTE

Figure 6: Bug severity prediction metrics: Accuracy, preci-
sion, recall and F1-score for 10-cross fold validation with
for GNN and fine-tuned BERT wit SMOTE

Figure 7: Bug priority prediction metrics: Accuracy, preci-
sion, recall and F1-score for 10-cross fold validation using
undersampling for GNN and fine-tuned BERT without
SMOTE

Figure 8: Bug priority prediction metrics: Accuracy, preci-
sion, recall and F1-score for 10-cross fold validation with
for GNN and fine-tuned BERT with SMOTE

Table 4: Precision, Recall and F1-score values for various classes of Priority and Severity classes for the two larget projects:
Core and Firefox

Core (Undersampling) Core (With SMOTE) Firefox (Undersampling) Firefox (With SMOTE)

LLM GNN LLM GNN LLM GNN LLM GNN

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Severity

Critical 0.64 0.65 0.66 0.95 0.94 0.94 0.64 0.66 0.65 0.95 0.93 0.95 0.54 0.5 0.49 0.66 0.44 0.53 0.67 0.54 0.58 0.68 0.43 0.58

S3 0.46 0.45 0.46 0.96 0.96 0.95 0.47 0.45 0.44 0.96 0.97 0.96 0.5 0.63 0.57 0.79 0.74 0.76 0.55 0.67 0.62 0.78 0.73 0.75

S4 0.72 0.66 0.61 0.95 0.95 0.94 0.73 0.65 0.62 0.96 0.95 0.97 0.69 0.66 0.7 0.91 0.89 0.93 0.72 0.57 0.65 0.93 0.88 0.94

Normal 0.78 0.86 0.82 0.95 0.97 0.95 0.79 0.87 0.81 0.96 0.97 0.96 0.66 0.58 0.57 0.69 0.86 0.76 0.66 0.8 0.59 0.7 0.87 0.75

Priority

P1 0.6 0.42 0.52 0.94 0.92 0.95 0.59 0.51 0.53 0.9 0.96 0.91 0.38 0.36 0.37 0.7 0.9 0.79 0.45 0.41 0.42 0.7 0.9 0.79

P2 0.42 0.54 0.47 0.89 0.9 0.9 0.45 0.58 0.46 0.9 0.88 0.89 0.4 0.32 0.31 0.65 0.45 0.25 0.5 0.36 0.35 0.66 0.16 0.25

P3 0.44 0.47 0.45 0.9 0.89 0.87 0.45 0.46 0.45 0.94 0.86 0.9 0.45 0.49 0.43 0.97 0.96 0.98 0.55 0.49 0.49 0.97 0.98 0.98

P4 0.97 0.85 0.91 0.94 0.92 0.93 0.96 0.96 0.9 0.95 0.92 0.94 0.1 0.05 0.12 0.11 0.04 0.09 0.29 0.25 0.27 0.3 0.31 0.34

P5 0.71 0.84 0.77 0.94 0.95 0.91 0.76 0.88 0.78 0.97 0.96 0.94 0.69 0.73 0.7 0.82 0.82 0.82 0.76 0.76 0.75 0.81 0.82 0.82

• After an in-depth analysis of the graph, we found that the node
features for the core graph are five times more features than those
for other project graphs, which explains the richness of the content
for the core project. The average degree of nodes in the core project
graph is also double that of other project graphs.

Results show that with the undersampling technique, GNNs are better
suited for tasks involving relational data, whereas LLMs struggle to capture
relational dependencies. However, we speculate that the latest LLMs could
show nuanced performance, and evaluation of which is part of our future
work

9



Graph Neural Network vs. Large Language Model: A Comparative Analysis for Bug Report Priority and Severity PredictionPROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil

Table 5: Precision, Recall and F1-score values for various classes of Priority and Severity classes for the two smaller projects:
Testing and DevTools

Testing (Undersampling) Testing (With SMOTE) DevTools (Undersampling) DevTools (With SMOTE)

LLM GNN LLM GNN LLM GNN LLM GNN

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Severity

Critical 0.06 0.05 0.04 0.13 0.15 0.14 0.69 0.65 0.67 0.7 0.71 0.7

S3 0.72 0.65 0.74 0.81 0.7 0.84 0.75 0.75 0.8 0.86 0.82 0.85 0.47 0.4 0.45 0.68 0.6 0.63 0.73 0.7 0.72 0.82 0.72 0.77

S4 0.74 0.5 0.53 0.76 0.75 0.58 0.76 0.64 0.73 0.79 0.75 0.72 0.54 0.5 0.53 0.69 0.67 0.68 0.75 0.82 0.75 0.8 0.83 0.79

Normal 0.79 0.85 0.81 0.85 0.95 0.92 0.81 0.94 0.84 0.87 0.95 0.91 0.79 0.7 0.8 0.68 0.8 0.71 0.8 0.8 0.84 0.81 0.9 0.87

Priority

P1 0.52 0.63 0.55 0.62 0.55 0.6 0.5 0.61 0.53 0.58 0.55 0.55 0.4 0.41 0.38 0.43 0.53 0.62 0.43 0.53 0.62 0.63 0.61 0.6

P2 0.43 0.35 0.36 0.3 0.21 0.26 0.43 0.42 0.38 0.48 0.47 0.46 0.42 0.32 0.35 0.4 0.58 0.37 0.4 0.58 0.37 0.54 0.44 0.56

P3 0.55 0.5 0.55 0.68 0.58 0.56 0.63 0.5 0.56 0.69 0.58 0.56 0.6 0.64 0.65 0.66 0.64 0.68 0.66 0.64 0.68 0.76 0.96 0.75

P4 0.67 0.74 0.77 0.89 0.97 0.92 0.74 0.79 0.78 0.9 0.96 0.94 0.06 0.1 0.06 0.08 0.14 0.09 0.08 0.14 0.09 0.18 0.15 0.2

P5 0.72 0.73 0.74 0.9 0.96 0.92 0.75 0.73 0.76 0.9 0.96 0.94 0.81 0.8 0.79 0.85 0.81 0.82 0.85 0.81 0.82 0.86 0.85 0.88

The Core project of Firefox is the largest project (Figure 2) whose com-
ponents are integral across all projects within the Mozilla ecosystem [5].
Thus, the classification scores are higher for the Core project than other
projects considered for this study due to the meaningful patterns available
for training models.

5.2.2 Oversampling: The figure 8 depicts that the measures for Core and
Firefox projects remain unchanged because they already have a balanced
dataset. Conversely, there is a significant difference in Devtools and Test-
ing project results. We see an 11 % increase. This sharp enhancement un-
derscores the efficacy of the algorithm in balancing the dataset, thereby
significantly boosting the model’s predictive performance.

6 THREATS TO VALIDITY
6.1 Internal Threats
The use of open-source software bug repository Bugzilla for Family of
Mozilla projects in this research is characterized by their highly imbalanced
data distribution. For higher severity and priority classes the data samples
are marginally smaller compared to the other classes such as “Normal”.
To mitigate its impact while training we have used SMOTE oversampling
method which relatively improved the results. Future studies could ex-
plore alternative data balancing methods on this repository for comparison.
Furthermore, while we opted for the BERT (bert-uncased-model) , a early
generation LLM model, for our analysis, the exploration of alternative mod-
els, such as ChatGPT [27] and Llama [36] may yield additional insights or
improvements.

6.2 External Threats
This study analyzed bug reports from four open-source project bug reposito-
ries. The intrinsic quality of these projects plays a crucial role in determining
the success of the analyzed techniques. It is important to note that com-
mercial and industrial software projects, which adhere to distinct protocols
compared to open-source projects, were not included in this analysis. To
broaden the applicability of the findings, future research should consider
applying the proposed methods to commercial and industrial software en-
vironments. Moreover, the research was based on severity and priority
labels extracted from the repositories at a specific point in time. Given that
these labels can be revised by moderators, even minor adjustments in the
bug reports could potentially impact the effectiveness of the researched
techniques.

6.3 Construct Threats
A possible concern for the validity of our construction lies in the selection
of evaluation metrics. The metrics we chose, such as accuracy, precision,
recall, and f-measure, are commonly used in studies of the similar nature.

7 CONCLUSION AND FUTUREWORK
Bug report severity and priority determination have broader resource and re-
lease management implications. Thus, determining the priority and severity
of incoming new bug reports through machine learning-based automation
has been of interest and has been explored intensively in the Software
Engineering domain recently. Our study proposes graph-based represen-
tation considering various attributes of the bug report such as product
type, component name, severity (while predicting priority), priority (while
predicting severity), and bug type to represent the bug report holistically
through nodes, edges and node properties. Various experiments and com-
parisons done using data mined from Bugzilla showed that Graph Neural
Network (GNN) outperformed early-gneration LLM (fine-tuned BERT) for
both priority and severity prediction by a substantial margin, emphasizing
that considering other details of the bug report for training has significant
implications on the overall machine learner’s performance.

GraphSAGE scales to large graphs; however, it may require more epochs
to train effectively. Whereas, GAT is moderately scalable and can capture
fine-grained relationships effectively [19]. While our proposed GNN-based
approach looks promising, its effectiveness when compared to state-of-the-
art LLMs [27], [36] for large-scale software projects, remains part of our
future work.

In future, we will explore real-world software projects to investigate the
scalability of our approach. Our future explorations will focus on how BERT
embeddings could capture hybrid information in a graph neural network.
Additionally, we will identify transfer learning in this context to predict the
severity and priority of bug reports belonging to a smaller project with a
limited training dataset. Comparisons between GNN and state-of-the-art
models such as ChatGPT [27] and Llama [36] will also be conducted to
evaluate their respective efficacies for severity and priority prediction.

ACKNOWLEDGMENT
We thank Aakash Sorathiya and Jacob Idoko, Masters students at the Soft-
ware Hub for AnalytiKs, Technology and Innovation lab, University of
Calgary for reviewing the initial draft of the manuscript and providing crit-
ical comments. Also, this research was partially supported by the Natural
Sciences and Engineering Research Council of Canada, NSERC Discovery
Grant RGPIN-2023-03365.

10



PROMISE ’24, July 16, 2024, Porto de Galinhas, Brazil Jagrit Acharya and Gouri Ginde

REFERENCES
[1] Asif Ali, Yuanqing Xia, Qasim Umer, and Mohamed Osman. 2024. BERT based

severity prediction of bug reports for the maintenance of mobile applications.
Journal of Systems and Software 208 (2024), 111–898.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, et al.
2020. Language models are few-shot learners. Advances in neural information
processing systems 33 (2020), 1877–1901.

[3] Bugzilla. 2024. Bugzilla API. https://bugzilla.mozilla.org/rest/bug/1000. [Accessed
21-03-2024].

[4] Bugzilla. 2024. Bugzilla website — bugzilla.mozilla.org. https://bugzilla.mozilla.
org/home. [Accessed 21-03-2024].

[5] Bugzilla. 2024. Components for Core. https://bugzilla.mozilla.org/
describecomponents.cgi?product=Core. [Accessed 21-03-2024].

[6] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[7] Junjie Chen, Shu Zhang, Xiaoting He, Lin, et al. 2021. How incidental are
the incidents? characterizing and prioritizing incidents for large-scale online
service systems. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (Virtual Event, Australia) (ASE ’20). As-
sociation for Computing Machinery, New York, NY, USA, 373–384. https:
//doi.org/10.1145/3324884.3416624

[8] Anh-Hien Dao and Cheng-Zen Yang. 2021. Severity prediction for bug reports
using multi-aspect features: a deep learning approach. Mathematics 9, 14 (2021),
16–44.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Haozhen Dong, Hongmin Ren, Jialiang Shi, Yichen Xie, and Xudong Hu. 2024.
Neighborhood contrastive learning-based graph neural network for bug triaging.
Science of Computer Programming 235 (2024), 103093. https://doi.org/10.1016/j.
scico.2024.103093

[11] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[12] Firefox. 2024. Priority Definitions; Firefox Source Docs documentation —
firefox-source-docs.mozilla.org. https://firefox-source-docs.mozilla.org/bug-
mgmt/guides/priority.html. [Accessed 23-03-2024].

[13] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Qin, et al. 2023. A survey of graph
neural networks for recommender systems: Challenges, methods, and directions.
ACM Transactions on Recommender Systems 1, 1 (2023), 1–51.

[14] Abeer Hamdy and Abdulrahman El-Laithy. 2019. Smote and feature selection
for more effective bug severity prediction. International Journal of Software
Engineering and Knowledge Engineering 29, 06 (2019), 897–919.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[16] Haibo He and Edwardo A Garcia. 2009. Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering 21, 9 (2009), 1263–1284.

[17] Jerónimo Hernández-González, Daniel Rodriguez, Iñaki Inza, Rachel Harrison,
and Jose A. Lozano. 2018. Learning to classify software defects from crowds: A
novel approach. Applied Soft Computing 62 (2018), 579–591. https://doi.org/10.
1016/j.asoc.2017.10.047

[18] Tinglin Huang, Yuxiao Dong, et al. 2021. MixGCF: An Improved Training Method
for Graph Neural Network-based Recommender Systems. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery Data Mining (KDD ’21).
Association for Computing Machinery, New York, NY, USA, 665–674.

[19] Bharti Khemani, Ketan Kotecha, and Sudeep Tanwar. 2024. A review of graph
neural networks: concepts, architectures, techniques, challenges, datasets, ap-
plications, and future directions. Journal of Big Data 11 (01 2024). https:
//doi.org/10.1186/s40537-023-00876-4

[20] Bharti Khemani, Shruti Patil, Ketan Kotecha, and Sudeep Tanwar. 2024. A re-
view of graph neural networks: concepts, architectures, techniques, challenges,
datasets, applications, and future directions. Journal of Big Data 11, 1 (2024), 18.
https://doi.org/10.1186/s40537-023-00876-4

[21] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations.

[22] Ahmed Lamkanfi, Serge Demeyer, Quinten David Soetens, and Tim Verdonck.
2011. Comparing Mining Algorithms for Predicting the Severity of a Reported
Bug. In 2011 15th European Conference on Software Maintenance and Reengineering.
249–258. https://doi.org/10.1109/CSMR.2011.31

[23] Saurabh Malgaonkar, Sherlock A. Licorish, and Bastin Tony Roy Savarimuthu.
2022. Prioritizing user concerns in app reviews – A study of requests for new
features, enhancements and bug fixes. Information and Software Technology 144
(2022), 106–798. https://doi.org/10.1016/j.infsof.2021.106798

[24] Lionel Marks, Ying Zou, and Ahmed E. Hassan. 2011. Studying the fix-time
for bugs in large open source projects. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering (Banff, Alberta, Canada)

(Promise ’11). Association for Computing Machinery, New York, NY, USA, Article
11, 8 pages. https://doi.org/10.1145/2020390.2020401

[25] Tim Menzies and Andrian Marcus. 2008. Automated severity assessment of
software defect reports. In 2008 IEEE International Conference on Software Main-
tenance. IEEE, 346–355.

[26] G Murphy and Davor Cubranic. 2004. Automatic bug triage using text cate-
gorization. In Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering. Citeseer, 1–6.

[27] OpenAI. 2023. ChatGPT (Mar 14 version). https://chat.openai.com/chat. Large
language model.

[28] Rama Ranjan Panda and Naresh Kumar Nagwani. 2023. Software bug pri-
ority prediction technique based on intuitionistic fuzzy representation and
class imbalance learning. Knowl. Inf. Syst. 66, 3 (oct 2023), 2135–2164. https:
//doi.org/10.1007/s10115-023-02000-7

[29] Showmick Guha Paul, Arpa Saha, Md. Zahid Hasan, Sheak Rashed Haider Noori,
and Ahmed Moustafa. 2024. A Systematic Review of Graph Neural Network
in Healthcare-Based Applications: Recent Advances, Trends, and Future Direc-
tions. IEEE Access 12 (2024), 15145–15170. https://doi.org/10.1109/ACCESS.2024.
3354809

[30] Camelia Serban and Andreea Vescan. 2019. Predicting reliability by severity and
priority of defects. In Proceedings of the 2nd ACM SIGSOFT International Workshop
on Software Qualities and Their Dependencies (Tallinn, Estonia) (SQUADE 2019).
Association for Computing Machinery, New York, NY, USA, 27–34. https://doi.
org/10.1145/3340495.3342753

[31] Meera Sharma, Punam Bedi, Krishna Kumar Chaturvedi, and V. B. Singh. 2012.
Predicting the priority of a reported bug using machine learning techniques and
cross project validation. 2012 12th International Conference on Intelligent Systems
Design and Applications (ISDA) (2012), 539–545. https://api.semanticscholar.org/
CorpusID:24459126

[32] Mohammed Q Shatnawi and Batool Alazzam. 2022. An Assessment of Eclipse
Bugs’ Priority and Severity Prediction Using Machine Learning. International
Journal of Communication Networks and Information Security 14, 1 (2022), 62–69.

[33] Youshuai Tan, Sijie Xu, ZhaoweiWang, Tao Zhang, Zhou Xu, and Xiapu Luo. 2020.
Bug severity prediction using question-and-answer pairs from stack overflow.
Journal of Systems and Software 165 (2020), 110–567.

[34] Yuan Tian, David Lo, and Chengnian Sun. 2013. DRONE: Predicting Priority of
Reported Bugs by Multi-factor Analysis. 2013 IEEE International Conference on
Software Maintenance (2013), 200–209. https://api.semanticscholar.org/CorpusID:
9704532

[35] Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. 2015. Automated prediction
of bug report priority using multi-factor analysis. Empirical Software Engineering
20 (2015), 1354–1383.

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. ArXiv
abs/2302.13971 (2023). https://api.semanticscholar.org/CorpusID:257219404

[37] Qasim Umer, Hui Liu, and Inam Illahi. 2020. CNN-Based Automatic Prioritization
of Bug Reports. IEEE Transactions on Reliability 69, 4 (2020), 1341–1354. https:
//doi.org/10.1109/TR.2019.2959624

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).

[39] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. Stat 1050 (2018), 4.

[40] Zhen Wang, Zhewei Wei, Yaliang Li, Weirui Kuang, and Bolin Ding. 2022. Graph
Neural Networks with Node-wise Architecture. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Washington DC,
USA) (KDD ’22). Association for Computing Machinery, New York, NY, USA,
1949–1958. https://doi.org/10.1145/3534678.3539387

[41] WikiPedia. 2024. Core - MozillaWiki — wiki.mozilla.org. https://wiki.mozilla.
org/Core. [Accessed 28-03-2024].

[42] WikiPedia. 2024. UserGuide/BugFields - MozillaWiki — wiki.mozilla.org. https:
//wiki.mozilla.org/BMO/UserGuide/BugFields#bug_severity. [Accessed 23-03-
2024].

[43] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li, Jian Pei,
Bo Long, et al. 2023. Graph neural networks for natural language processing: A
survey. Foundations and Trends® in Machine Learning 16, 2 (2023), 119–328.

[44] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional net-
works for text classification. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 7370–7377.

[45] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81. https://doi.org/
10.1016/j.aiopen.2021.01.001

Received 2024-03-28; accepted 2024-04-19

11

https://bugzilla.mozilla.org/rest/bug/1000
https://bugzilla.mozilla.org/home
https://bugzilla.mozilla.org/home
https://bugzilla.mozilla.org/describecomponents.cgi?product=Core
https://bugzilla.mozilla.org/describecomponents.cgi?product=Core
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1016/j.scico.2024.103093
https://doi.org/10.1016/j.scico.2024.103093
https://firefox-source-docs.mozilla.org/bug-mgmt/guides/priority.html
https://firefox-source-docs.mozilla.org/bug-mgmt/guides/priority.html
https://doi.org/10.1016/j.asoc.2017.10.047
https://doi.org/10.1016/j.asoc.2017.10.047
https://doi.org/10.1186/s40537-023-00876-4
https://doi.org/10.1186/s40537-023-00876-4
https://doi.org/10.1186/s40537-023-00876-4
https://doi.org/10.1109/CSMR.2011.31
https://doi.org/10.1016/j.infsof.2021.106798
https://doi.org/10.1145/2020390.2020401
https://chat.openai.com/chat
https://doi.org/10.1007/s10115-023-02000-7
https://doi.org/10.1007/s10115-023-02000-7
https://doi.org/10.1109/ACCESS.2024.3354809
https://doi.org/10.1109/ACCESS.2024.3354809
https://doi.org/10.1145/3340495.3342753
https://doi.org/10.1145/3340495.3342753
https://api.semanticscholar.org/CorpusID:24459126
https://api.semanticscholar.org/CorpusID:24459126
https://api.semanticscholar.org/CorpusID:9704532
https://api.semanticscholar.org/CorpusID:9704532
https://api.semanticscholar.org/CorpusID:257219404
https://doi.org/10.1109/TR.2019.2959624
https://doi.org/10.1109/TR.2019.2959624
https://doi.org/10.1145/3534678.3539387
https://wiki.mozilla.org/Core
https://wiki.mozilla.org/Core
https://wiki.mozilla.org/BMO/UserGuide/BugFields##bug_severity
https://wiki.mozilla.org/BMO/UserGuide/BugFields##bug_severity
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

	Abstract
	1 Introduction
	2 Related Work
	2.1 Conventional Machine Learning-Based Approaches
	2.2 Deep Learning-Based Approaches
	2.3 Applications of GNN

	3 Data Collection
	4 Methodology and Architecture
	4.1 Data Pre-processing
	4.2 Graph Structure
	4.3 Graph Neural Network
	4.4 Fine-Tuned BERT (LLM)
	4.5 Managing Skewed Dataset
	4.6 Model Training
	4.7 Computational Resources
	4.8 Model Evaluation

	5 Results
	5.1 Answering RQ1: Bug Report Severity Prediction
	5.2 Answering RQ2: Bug Report Priority Prediction

	6 Threats to validity
	6.1 Internal Threats
	6.2 External Threats
	6.3 Construct Threats

	7 Conclusion and future work
	References

